\[ \vec{A} = 5\hat{x} + 4\hat{y} \]
One-dimensional time-dependent Schrodinger equation of a particle of mass \(m\) is \[ i\hbar \frac{d \Psi(x,t)}{dt} = - \frac{\hbar^{2}}{2m} \nabla^{2} \Psi(x,t) + V(x) \Psi(x,t)\] where \(\Psi(x,t)\) is the wave-function representing the particle and \(V(x)\) is assumed to be a real function representing the potential energy of the particle.
\[ \Ket{ p } \]
\( \bra{math}\)
\[ \ket{math}\]
\[ \braket{math}\]
\[ \set{math}\]
\[ \Bra{math}\)
\[ \Ket{math}\]
\[ \Braket{math}\]
\[ \Set{math}\]
Take an example : \[ \bra{\Psi}\]